改变世界的四大产品 总 览



数据中心





活楼

## 远大简介

远大科技集团有限公司,创于1988年,员工3000多人,是一家以创新为使命、以环保为责任的民营企业。1992~2021年开发了全系列中央空调、洁净新风产品。30多年来,远大一直是全球非电中央空调领导者,在80多个国家享有盛誉

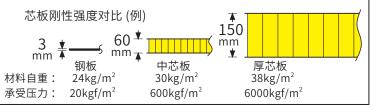
2009~2025年, 远大集团投入上千名员工, 上百亿资金, 研发成功有望改变世界的四大产品: 预制高层住宅-活楼、预制超高层数据中心、预制三明治高架路、铝风电, 已在6个国家落地应用

### 远大科技集团有限公司

| 远大空调<br>有限公司          | 远大洁净<br>空气科技<br>有限公司 | 远大能源<br>利用管理<br>有限公司 | 远大再生<br>资源股份<br>有限公司                               |         |
|-----------------------|----------------------|----------------------|----------------------------------------------------|---------|
| 1988<br>长沙            | 2005<br>长沙           | 2005<br>北京           | 2008<br>岳阳                                         | 1       |
| 远大美国                  | <br>- 远大欧洲           |                      | <br>  远大印尼<br>  有限公司                               | 1 1 1 1 |
| 1997                  | 2001<br>L 巴黎         | 2018<br>首尔           | 2019<br>强加达<br>——————————————————————————————————— | 1       |
| 远大活楼<br>有限公司<br>含数据中心 | 远大路桥<br>有限公司         | 远大丰电<br>科技有限<br>公司   |                                                    |         |
| 2009<br>岳阳            | 2017<br>长沙           | 2019<br>长沙           |                                                    |         |

注:实线框为远大集团100%持股公司(红框为四大产品公司);虚线框 为远大集团持股≥60%子公司;数字为创立年,城市为注册地



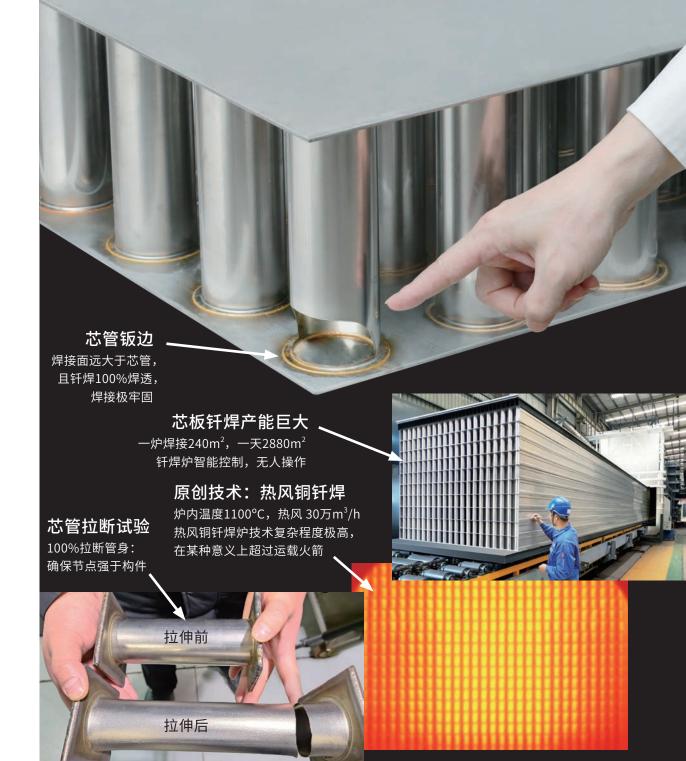



## 产品技术背景

### 1. 基础材料: 芯板

活楼、数据中心、高架路、铝风电,都以远大独创的芯板为基础 材料。芯板材料及生产线于2018年研发成功,已获PCT国际专 利,在全球70多个有工业能力的国家,拥有独家专利权

远大芯板由上下两块薄金属板,中间夹极薄的圆管阵列及钎焊料,吹入1100℃无氧热风,将它们牢牢焊为一体。远大芯板比同等重量的实心金属板,刚性强度高10~400倍,是终极力学性能的板材。由于芯板尺寸巨大,生产效率极高,成本极低,应用极广泛。使这种看似简单的材料技术,有望从根部改变世界建筑、交通、能源产业




### 铜钎焊对比

| 对比项   | 付比项 钎焊工艺 |         | 每炉产量              | 钎焊时间 | 钎焊电耗   |
|-------|----------|---------|-------------------|------|--------|
| 传统蜂窝板 | 热辐射1100℃ | 长宽<1.5m | <6m²              | >8小时 | 80度/kg |
| 远大芯板  | 热风1100℃  | 长12m宽2m | 240m <sup>2</sup> | 4小时  | 1度/kg  |

## 2. 四大产品研发投入

| 产品   | 研发年份      | 研发员工 | 投入成本 | 实验项目 | 专利  |
|------|-----------|------|------|------|-----|
| 活楼   | 2009~2024 | 1000 | 80亿元 | 60栋  | 225 |
| 数据中心 | 2018~2025 | 150  | 4亿元  | 3栋   | 27  |
| 高架路  | 2017~2025 | 120  | 6亿元  | 9座   | 28  |
| 铝风电  | 2019~2025 | 300  | 12亿元 | 12台  | 75  |





# 产品竞争优势

|      | 目标市场                                         | 市场机会                                                                                                                  | 成本优势                                                                                          | 性能优势                                                                                               | 环保优势                                                                             |
|------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 活楼   | 发达国家:<br>20F~120F住宅<br>人均GDP ≥3万美<br>元国家的大城市 | 20000亿美元 (建安费,下同)<br>因发达国家限制低技人员移民及工作<br>签证,长期存在建筑工人短缺的结构<br>性问题,住宅缺口很大。如果活楼这<br>种低成本、短工期住宅面市,未来5<br>年,发达国家每年需要5亿m²以上 | 成本低40~60%<br>因发达国家劳工长期短缺,施工成本极高,中高层住宅成本3000~5500美元/m²;活楼在发展中国家预制,在发达国家安装,成本1800~2200美元/m²     | 1.工厂预制,质量缺陷接近零<br>2.超级隔音:采用欧美澳日韩等<br>发达国家隔音标准中的最高标准,尤其是采用了4层玻璃窗、<br>3层楼板等极端隔音措施<br>3.配洁净新风机,极高空气品质 | 1.全不锈钢结构,零混<br>凝土,材料循环利用<br>2.超级隔热,近零能耗<br>3.只建中高层,缩小城<br>市半径,为城市留出<br>更多绿地      |
| 数据中心 | 全球:<br>20F~140F<br>数据中心                      | 2800亿美元<br>AI的快速发展导致全球急需扩建数据中心,由于城市土地稀缺,且数据中心需要避免过大的网线投资和损耗,只有向高空发展。未来5年,全球数据中心每年新增约5000万m²                           | 成本低20~70%<br>由于独创芯板结构,建高层与低层成本相近,加上工厂预制,施工速度快10倍以上,成本比发展中国家低20~40%,比发达国家低50~70%               |                                                                                                    | 1.采用远大烟气制冷机,100%利用发电尾气制冷,零排放2.全钢结构,零混凝土,材料循环利用3.施工无扬尘、无垃圾                        |
| 高架路  | 全球:<br>高架高速公路<br>城市高架路<br>桥梁                 | 1700亿美元<br>传统地面公路设计周期长、施工慢,<br>而传统的高速高架路成本又难以接<br>受,如有低成本高速高架路面市,未<br>来5年,全球每年至少新增6000公里                              | 成本低30~70%<br>由于独创芯板结构,加上工厂预制,现场施工量减少90%,工期短10倍。成本比发展中国家低30~40%,比发达国低50~70%                    |                                                                                                    | 1.公路架空,不干扰水<br>系及动物迁徙<br>2.全钢结构,零混凝土<br>3.不需施工便道,不破<br>坏土地;无施工垃圾                 |
| 铝风电  | 发达国家:<br>陆上风电<br>海上风电                        | 2800亿美元<br>由于全球电动车增长及重化工业电气<br>化转型和AI算力耗电的急剧增长,以<br>及全球淘汰化石能源趋势日益强劲,<br>未来5年,全球可再生电力每年新增<br>约400GW                    | 度电成本低20~40%<br>1.叶片成本较高,但塔架高、寿命长,发电量大,度电成本低<br>2.叶片、塔架、主机均为集装箱尺寸运输,大幅降低运费<br>3.废弃后材料100%可回收利用 | 1.铝合金叶片耐用50年,叶片及<br>塔架均为桁架结构,能抗台风<br>2.双层叶片捕风面积更大,发电<br>量大幅提升<br>3.铝合金叶片不变形,运行几十<br>年后,捕风性能如初      | 1.铝合金替代玻璃钢,<br>是唯一符合欧美淘汰<br>玻璃纤维法规的产品<br>2.集装箱运输碳排放低<br>3.自爬吊建高塔,无需<br>风电上山修路毁山体 |

# 预制高层住宅-活楼 舒适之家 幸福人生

- 1. 高科技设计 16年投入1000人、11亿美元,经过上百种建筑方案筛选,数万种材料、部件试错和试验,16次技术迭代,6国60余幢建筑验证
- 2. 高科技材料 独创超强超轻"不锈钢芯板",零混凝土,自重为混凝土建筑的 1/6,超级抗震,建造高层甚至超高层,与低层建筑成本相近
- 3. 高科技建造 全球筛选最高品质材料,智能化流水线生产,确保每个细节零 缺陷。现场施工只需拧螺栓等简单作业,一天安装3层
- 4. 自由的空间 12mx4.8m无柱净空,房间开阔,布局灵活;入住后还可改变房间尺寸、数量;每间卧室都有飘窗,从早到晚都照进阳光
- 5. 安静的生活 4层玻璃窗,3层楼板天花板,双层户间墙、双层户门,不论活 楼建在哪国,都采用欧美澳加日韩等国隔音标准中的最高指标
- 6. 健康的空气 100%新风,99.9%过滤PM2.5,确保室内比室外洁净100倍,
- 房间一个月不打扫也一尘不染; 所有材料经无毒认证和检验 7. 怡人的温度 被动房隔热、超节能空调、低谷电水蓄能,在四季恒温的同
- 时,节省住户能源开支90%以上,并促进电网峰谷平衡 8. 全球的好评 荣获全球建筑科技最高奖:世界模块化建筑协会 (MBI) 住宅奖 第一名,世界高层建筑与都市人居学会 (CTBUH) 全球创新奖





楼板材料: 不锈钢芯板



# 预制超高层数据中心 有限资源 无限 A I

- 1. 超级 抗震 建筑采用远大独创三明治结构"钢芯板",零混凝土,超强超轻
- 2. 超级省地 芯板建筑自重为混凝土建筑的1/6,可以低成本建高楼。如将数 据中心建到45~140层,比目前数据中心节地5~40倍,可建在市 区,解决数据中心难招员工的痛点,并减少线路建设和运行成本
- 3. 零 碳 制 冷 采用远大独创烟气吸收式制冷系统,100%利用发电尾气
- 4. 快速交付 建筑模块100%在工厂智能流水线预制,机电系统也是工厂预 制,建筑现场安装一天3层。并且,建筑成本降低20~70%

| 类    | 产品型号                              |               | B130                                         | B600                                           | B1000                                              | B5000                                                |
|------|-----------------------------------|---------------|----------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------------|
| 建筑   | 建筑型号<br>层数<br>建筑外形(长宽高)<br>最小地块尺寸 | F<br>m<br>m   | 45F54<br>45<br>54x54x223<br>84x84<br>(0.7公顷) | 70F93<br>70<br>93x93x345<br>123x123<br>(1.5公顷) | 90F54m4<br>90<br>148x148x440<br>178x178<br>(3.2公顷) | 140F93m4<br>140<br>246x246x680<br>276x276<br>(7.6公顷) |
|      | 建筑面积<br>机柜区面积<br>NVL72机柜设置量       | m²<br>m²<br>台 | 131,220<br>86,600<br>29,000                  | 605,430<br>400,000<br>133,000                  | 1,049,760<br>692,800<br>200,000                    | 4,843,440<br>3,030,600<br>1,000,000                  |
| 发电   | 发电机型号(台数)<br>总发电量<br>天然气总消耗量      | MW<br>m³/h    | 7HA.03(1)<br>430<br>108,700                  | 7HA.03(4)<br>1,720<br>434,800                  | 7HA.03(6)<br>2,580<br>652,200                      | 7HA.03(30)<br>12,900<br>3,261,000                    |
| 制冷   | 制冷机型号(台数)<br>总制冷量                 | –<br>MW       | BE2000(14)<br>450                            | BE2000(64)<br>1,800                            | BE2000(96)<br>2,710                                | BE2000(480)<br>13,540                                |
| 报价\$ | 建筑系统<br>发电系统<br>制冷系统              | M<br>M<br>M   | 448<br>300<br>40                             | 2,064<br>1,200<br>183                          | 3,446<br>1,800<br>274                              | 16,741<br>9,000<br>1,371                             |
|      | 合计                                | М             | 788                                          | 3,447                                          | 5,520                                              | 27,112                                               |
|      | 折合每个机柜                            | \$            | 27,172                                       | 25,917                                         | 27,600                                             | 27,112                                               |

#### 建筑技术数据:

1. 建筑结构材料: 高强碳钢

2. 建筑楼板、梁材料: 钢芯板 6. 技术标准: ANSI/TIA-942-C、ASHRAE 90.4

3. 柱距/柱径: 13m/0.95m

4. 层高/净高: 4.8m/4m

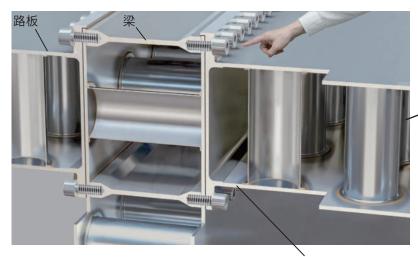
注: 建筑尺寸、层数可根据客户需要调整

5. 发电机、制冷机设置场所:避难层及屋顶

7. 施工方式:建筑模块、机电100%工厂预制

8. 建设周期:设计、预制3~7月,安装一天3层






楼板、横梁材料: 钢芯板



## 预制三明治高架路 芯道路 新世界

- 1. 高科技材料:路板及梁全部采用远大独创的三明治结构"钢芯板",零混凝土,自重减轻60~70%。"钢芯板"为热风铜钎焊,焊接节点强于构件,耐疲劳寿命比传统"正交异性板"长5倍以上,150年寿命期不会脱焊
- 2. AI设计、制造: 所有构件采用AI制造,一次性钎焊成型; 出厂采用集装箱式运输,一件可运120m²高架路模块 (按路板面积),实现低成本全球运输
- 3. 高科技施工: 只需提前做好墩基,现场无需施工便道,吊机直接在高架路上吊装桥墩、路板、梁,施工速度快10倍,一个小组每月至少完成一公里
- **4. 替代传统钢结构高架路**:由于钢耗低、预制成本低、运费低、安装费低、工期短,成本比传统钢结构低30~70%,并且质量更高、寿命更长
- **5. 替代钢筋混凝土高架路**:钢筋混凝土是脆性材料,遇地质缺陷或地震,可能倒塌,且钢筋锈蚀难发现,因此全球每年有混凝土桥垮塌,钢桥从没塌
- 6. 替代地面公路: 在丘陵、高山、沙漠及多雨地区,成本甚至低于地面公路
- 7. 保护生态: 高架路降低对村镇的干扰,并保护天然水系及生态不被切断
- 8. 应用场景: 高速公路、市政公路、跨江跨海大桥、轨道路基,也可做悬索桥,还可建双层或多层。桥梁下预留了吊轨接口,可轻易加设轻轨列车







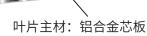
路板、梁材料: 钢芯板



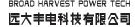
## 铝风电 绿风电绿全球

1. 全球最强 独创铝合金芯板双层叶片, 加碳纤绳, 不怕台风

2. 全球最省 发明分体叶片, 集装箱尺寸运输, 减少数倍运费


3. 全球最高 发明自爬吊,容易建高塔,全球处处是风场

4. 全球最赚 铝合金耐用 50 年,投资回报比传统风电高一倍


5. 全球最净 铝材循环利用,破解玻璃钢污染的世界性难题

6. 全球最绿 一台风电制、运、安的碳排放,运行半年可抵消

| 产品型号                          |    | F8              | F30             |
|-------------------------------|----|-----------------|-----------------|
| 额定功率                          | MW | 8               | 30              |
| 风轮直径                          | m  | 160             | 320             |
| 叶片主材                          |    | 铝合金             | 铝合金             |
| 塔架高度                          | m  | 212 / 153 / 106 | 307 / 236 / 189 |
| 运输尺寸 m 12.2x2.4x3 (按40呎集装箱尺寸) |    |                 | 装箱尺寸)           |









